Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(S)-1-(2-Chlorophenyl)-2-oxocyclohexan-1-aminium D-tartrate

Marhaba Hojahmat,^a Guangrong Zheng,^b Max Siegler,^c Sean Parkin,^c Manfred Biermann^d and Peter A. Crooks^{b*}

^aYaupon Therapeutics, Inc., 259 North Radnor-Chester Road, Suite 205, Radnor, PA 19087, USA, ^bDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, ^cDepartment of Chemistry University of Kentucky, Lexington, KY 40536, USA, and ^dResodyn Corporation, 130 North Main Street, Suite 600, Butte, MT 59701, USA Correspondence e-mail: pcrooks@email.uky.edu

Received 6 December 2010; accepted 17 February 2011

Key indicators: single-crystal X-ray study; T = 90 K; mean $\sigma(C-C) = 0.008$ Å; R factor = 0.060; wR factor = 0.139; data-to-parameter ratio = 13.0.

In the title compound, $C_{12}H_{15}CINO^+ \cdot C_4H_5O_6^-$, the cyclohexanone ring adopts a chair conformation. The benzene ring is significantly twisted so that it is in an almost perpendicular position to the C-N bond with a CAr-CAr-C-N torsion angle of $-96.5 (5)^{\circ}$. Intermolecular N-H···O and O-H···O hydrogen bonds are observed in the crystal structure.

Related literature

For background to ketamine, see: Holtman (2006); Holtman et al. (2006); Heshmati et al. (2003); Kohrs & Durieux (1998). For the synthesis, see: Hong & Davisson (1982); Parcell & Sanchez (1981).

Experimental

Crystal data

 $C_{12}H_{15}CINO^+ \cdot C_4H_5O_6^ M_r = 373.78$ Orthorhombic, P212121 a = 7.1411 (2) Å b = 9.9878 (4) Å c = 23.7530 (11) Å

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SCALEPACK: Otwinowski & Minor, 1997) $T_{\rm min}=0.949,\ T_{\rm max}=0.992$

 $V = 1694.16 (11) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.27 \text{ mm}^{-1}$ T = 90 K $0.20 \times 0.20 \times 0.03~\text{mm}$

13735 measured reflections 2986 independent reflections 1519 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.110$

	<u> </u>
$R[F^2 > 2\sigma(F^2)] = 0.060$	$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.139$	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
S = 0.96	Absolute structure: Flack (1983),
2986 reflections	1241 Friedel pairs
230 parameters	Flack parameter: 0.10 (10)
H-atom parameters constrained	-

Table 1			
Hydrogen-bond	geometry	(Å.	°).

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots O7^{i}$	0.91	1.81	2.715 (5)	176
$N1 - H1B \cdots O4$	0.91	2.05	2.856 (5)	147
$N1 - H1C \cdot \cdot \cdot O3^{ii}$	0.91	2.29	2.893 (5)	123
$N1-H1C\cdots O5^{ii}$	0.91	2.37	3.001 (5)	126
$O2-H2A\cdots O1^{iii}$	0.84	2.60	3.388 (5)	157
$O5-H5A\cdots O6^{iv}$	0.84	2.09	2.864 (5)	153
$O6-H6\cdots O4^{v}$	0.84	1.64	2.460 (5)	166
$O6-H6\cdots O3^{v}$	0.84	2.62	3.265 (5)	134

Symmetry codes: (i) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$; (v) x + 1, y, z.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and local procedures.

The research was funded by the US Army Medical Research Material Command, Combat Casualty Care Research, Fort Detrick, MD contract W81XWH-06-1-0275 (MB) and by Yaupon Therapeutics, Inc. (MH, GZ, MS, SP and PAC).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2766).

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Heshmati, F., Zeinali, M., Noroozinia, H., Abbacivash, R. & Mahoori, A. (2003). Iran. J. Allergy Asthma Immunol. 2, 175-80.
- Holtman, J. R. (2006). J. Pain, 7, Issue 4, S44.
- Holtman, J., Johnson, J., Crooks, P. & Wala, E. (2006). J. Pain, 7, Issue 4, S43.
- Hong, S. C. & Davisson, J. N. (1982). J. Pharm. Sci. 71, 912-914.
- Kohrs, R. & Durieux, M. E. (1998). Anesth. Analg. 87, 1186-1193.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Parcell, R. F. & Sanchez, P. J. (1981). J. Org. Chem. 46, 5055-5060.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, 0736 [doi:10.1107/S1600536811006131]

(S)-1-(2-Chlorophenyl)-2-oxocyclohexan-1-aminium D-tartrate

M. Hojahmat, G. Zheng, M. Siegler, S. Parkin, M. Biermann and P. A. Crooks

Comment

KetalarTM, the racemic mixture of *R*- and *S*-Ketamines is becoming the sedative and anesthetic of choice for emergency sedation in children and victims with unknown medical history, *e.g.* from traffic accidents to battlefield conditions, because it causes minimal respiratory depression in comparison to other anesthetics (Heshmati *et al.*, 2003). *S*-Ketamine was found 3–4 times more potent as an anesthetic than its *R*-enantiomer, and twice as potent as KetalarTM with fewer side effects such as psychedelic, disorientation and anxiety (Kohrs & Durieux, 1998). *S*-Norketamine, the major metabolite of *S*-Ketamine in humans and animals, is emerging as a novel drug for treatment of neuropathic pain (Holtman *et al.*, 2006) and for analgesia (Holtman, 2006). To confirm the absolute configuration of (+)-norketamine, herein we report on the X-ray crystallographic characterization of crystalline *S*-norketamine D-tartrate salt.

Experimental

S-Norketamine was obtained as a D-tartrate salt form *via* chiral resolution of racemic norketamine by fractional crystallization of the D-tartrate salt (Hong & Davisson, 1982). Racemic norketamine was produced in large quantity according to literature report (Parcell & Sanchez, 1981). The chiral purity of the product was determined by chiral HPLC on a Chiralcel OJ—H column, and afforded ee% > 99%. The specific rotation of the tartrate salt is $[a]_D + 55.7^\circ$ (c = 2, H₂O), and the specific rotations for the corresponding corresponding free base and HCl salt are $[a]_D + 3.6^\circ$ (c = 2, EtOH) and $[a]_D + 75.9^\circ$ (c = 1, H₂O), respectively.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.95 Å (C_{Ar}H), 1.00 Å (R_3 CH), 0.99 Å (R_2 CH₂), 0.84 Å (O—H), 0.91 Å (NH₃), and with U_{iso} (H) values set to either 1.2 U_{eq} or 1.5 U_{eq} (NH₃, OH) of the attached atom.

Figures

Fig. 1. A view of the molecules with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

(S)-1-(2-Chlorophenyl)-2-oxocyclohexan-1-aminium D-tartrate

F(000) = 784

 $\theta = 1.0-27.5^{\circ}$

 $\mu = 0.27 \text{ mm}^{-1}$ T = 90 K

Plate, colourless

 $0.20 \times 0.20 \times 0.03 \text{ mm}$

 $D_{\rm x} = 1.465 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2155 reflections

Crystal data

 $C_{12}H_{15}CINO^+ C_4H_5O_6^ M_r = 373.78$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.1411 (2) Å b = 9.9878 (4) Å c = 23.7530 (11) Å V = 1694.16 (11) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer	2986 independent reflections
Radiation source: fine-focus sealed tube	1519 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.110$
Detector resolution: 9.1 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
ω scans at fixed $\chi = 55^{\circ}$	$h = -8 \rightarrow 8$
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)	$k = -11 \rightarrow 11$
$T_{\min} = 0.949, \ T_{\max} = 0.992$	<i>l</i> = −27→28
13735 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.060$	H-atom parameters constrained
$wR(F^2) = 0.139$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0568P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.96	$(\Delta/\sigma)_{\rm max} < 0.001$
2986 reflections	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
230 parameters	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), 1241 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.10 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.3664 (2)	0.71723 (16)	0.91603 (9)	0.0776 (7)
01	0.4054 (5)	0.4009 (4)	0.92986 (16)	0.0391 (11)
N1	0.5914 (5)	0.4734 (4)	0.83868 (16)	0.0254 (12)
H1A	0.6786	0.4352	0.8158	0.038*
H1B	0.5453	0.5485	0.8220	0.038*
H1C	0.4964	0.4144	0.8448	0.038*
C1	0.5939 (7)	0.7596 (6)	0.8988 (2)	0.0418 (17)
C2	0.6335 (10)	0.8933 (6)	0.8922 (3)	0.057 (2)
H2	0.5381	0.9585	0.8973	0.069*
C3	0.8128 (10)	0.9322 (6)	0.8779 (2)	0.0449 (18)
Н3	0.8403	1.0242	0.8720	0.054*
C4	0.9520 (9)	0.8374 (6)	0.8723 (2)	0.0339 (15)
H4	1.0764	0.8643	0.8638	0.041*
C5	0.9097 (7)	0.7021 (5)	0.8790 (2)	0.0282 (15)
Н5	1.0058	0.6375	0.8740	0.034*
C6	0.7292 (7)	0.6595 (5)	0.8931 (2)	0.0246 (14)
C7	0.6805 (7)	0.5100 (5)	0.8940 (2)	0.0226 (13)
C8	0.8535 (7)	0.4174 (5)	0.9031 (2)	0.0291 (14)
H8A	0.8155	0.3229	0.8978	0.035*
H8B	0.9501	0.4387	0.8746	0.035*
C9	0.9367 (8)	0.4348 (6)	0.9620 (2)	0.0399 (16)
H9A	1.0470	0.3756	0.9662	0.048*
H9B	0.9791	0.5285	0.9669	0.048*
C10	0.7954 (9)	0.4015 (6)	1.0067 (2)	0.0489 (18)
H10A	0.8503	0.4184	1.0443	0.059*
H10B	0.7626	0.3054	1.0043	0.059*
C11	0.6186 (9)	0.4861 (7)	0.9995 (2)	0.0505 (19)
H11A	0.5231	0.4588	1.0274	0.061*
H11B	0.6481	0.5819	1.0055	0.061*
C12	0.5447 (9)	0.4655 (5)	0.9409 (2)	0.0321 (14)
C13	0.5503 (8)	0.6596 (5)	0.6984 (3)	0.0266 (14)
C14	0.7637 (7)	0.6537 (5)	0.6976 (2)	0.0242 (14)
H14	0.8039	0.5662	0.7141	0.029*
C15	0.8443 (7)	0.7649 (5)	0.7331 (2)	0.0218 (13)
H15	0.7942	0.7538	0.7721	0.026*
C16	1.0558 (8)	0.7639 (6)	0.7370 (2)	0.0255 (14)
02	0.8330 (5)	0.6619 (4)	0.64159 (14)	0.0297 (10)
H2A	0.7541	0.7012	0.6212	0.045*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

O3	0.4634 (5)	0.6867 (3)	0.65555 (16)	0.0291 (10)
O4	0.4745 (5)	0.6434 (3)	0.74860 (16)	0.0334 (10)
O5	0.7747 (5)	0.8881 (3)	0.71191 (15)	0.0287 (10)
H5A	0.8366	0.9517	0.7257	0.043*
O6	1.1301 (5)	0.6502 (3)	0.74840 (16)	0.0304 (9)
H6	1.2464	0.6547	0.7436	0.046*
O7	1.1404 (5)	0.8705 (3)	0.72982 (14)	0.0269 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0331 (10)	0.0394 (9)	0.160 (2)	0.0090 (9)	0.0157 (11)	-0.0109 (12)
01	0.029 (3)	0.038 (2)	0.050 (3)	-0.0149 (19)	0.003 (2)	-0.008 (2)
N1	0.025 (3)	0.019 (2)	0.032 (3)	0.001 (2)	0.000 (2)	-0.002 (2)
C1	0.031 (4)	0.027 (4)	0.068 (5)	0.004 (3)	-0.004 (3)	-0.005 (3)
C2	0.045 (4)	0.030 (4)	0.096 (6)	0.009 (4)	-0.009 (4)	-0.008 (4)
C3	0.066 (5)	0.026 (4)	0.042 (4)	-0.011 (4)	-0.025 (4)	-0.004 (3)
C4	0.041 (4)	0.033 (4)	0.028 (3)	-0.009 (3)	0.003 (3)	0.003 (3)
C5	0.030 (4)	0.029 (4)	0.026 (3)	-0.006 (3)	-0.002 (3)	0.001 (3)
C6	0.031 (3)	0.026 (3)	0.017 (3)	-0.001 (3)	-0.001 (3)	0.000 (3)
C7	0.024 (3)	0.021 (3)	0.023 (3)	-0.005 (3)	-0.005 (3)	-0.001 (3)
C8	0.030 (3)	0.021 (3)	0.036 (4)	0.001 (3)	-0.005 (3)	0.005 (3)
C9	0.043 (4)	0.037 (4)	0.040 (4)	0.000 (3)	-0.004 (4)	0.010 (3)
C10	0.053 (5)	0.055 (5)	0.039 (4)	-0.008 (4)	-0.010 (4)	0.010 (4)
C11	0.056 (5)	0.068 (5)	0.027 (4)	-0.013 (4)	0.016 (4)	-0.004 (4)
C12	0.035 (4)	0.028 (4)	0.033 (4)	0.009 (3)	0.005 (3)	-0.001 (3)
C13	0.023 (3)	0.014 (3)	0.043 (4)	-0.003 (3)	-0.007 (3)	0.005 (3)
C14	0.023 (3)	0.022 (3)	0.028 (4)	-0.002 (3)	0.002 (3)	0.010 (3)
C15	0.018 (3)	0.023 (3)	0.025 (3)	0.003 (3)	0.001 (3)	0.003 (3)
C16	0.031 (4)	0.030 (4)	0.016 (3)	0.006 (3)	0.007 (3)	0.001 (3)
O2	0.030 (2)	0.031 (2)	0.028 (2)	0.004 (2)	-0.0047 (19)	-0.0057 (18)
O3	0.025 (2)	0.022 (2)	0.040 (2)	0.0016 (18)	-0.012 (2)	0.0039 (19)
O4	0.027 (2)	0.035 (2)	0.039 (2)	-0.0003 (19)	-0.005 (2)	0.010 (2)
O5	0.028 (2)	0.014 (2)	0.044 (2)	0.0049 (17)	-0.0106 (19)	-0.0062 (19)
O6	0.013 (2)	0.027 (2)	0.052 (3)	0.0024 (19)	0.002 (2)	0.010 (2)
07	0.027 (2)	0.023 (2)	0.031 (2)	-0.0046 (19)	0.0049 (19)	0.0026 (18)

Geometric parameters (Å, °)

Cl1—C1	1.728 (6)	С9—Н9А	0.9900
O1—C12	1.214 (6)	С9—Н9В	0.9900
N1—C7	1.505 (6)	C10—C11	1.529 (8)
N1—H1A	0.9100	C10—H10A	0.9900
N1—H1B	0.9100	C10—H10B	0.9900
N1—H1C	0.9100	C11—C12	1.503 (8)
C1—C2	1.374 (8)	C11—H11A	0.9900
C1—C6	1.397 (7)	C11—H11B	0.9900
C2—C3	1.380 (8)	C13—O3	1.223 (6)
С2—Н2	0.9500	C13—O4	1.320 (6)

C3—C4	1.379 (7)	C13—C14	1.525 (7)
С3—Н3	0.9500	C14—O2	1.423 (5)
C4—C5	1.393 (7)	C14—C15	1.508 (6)
C4—H4	0.9500	C14—H14	1.0000
C5—C6	1.398 (7)	C15—O5	1.419 (5)
С5—Н5	0.9500	C15—C16	1.513 (6)
C6—C7	1.533 (7)	С15—Н15	1.0000
C7—C12	1.542 (7)	C16—O7	1.237 (6)
С7—С8	1.558 (7)	C16—O6	1.282 (6)
C8—C9	1.531 (7)	O2—H2A	0.8400
C8—H8A	0.9900	O5—H5A	0.8400
C8—H8B	0.9900	O6—H6	0.8400
C9—C10	1.501 (7)		
C7—N1—H1A	109.5	С10—С9—Н9В	109.4
C7—N1—H1B	109.5	С8—С9—Н9В	109.4
H1A—N1—H1B	109.5	Н9А—С9—Н9В	108.0
C7—N1—H1C	109.5	C9—C10—C11	110.7 (5)
H1A—N1—H1C	109.5	C9—C10—H10A	109.5
H1B—N1—H1C	109.5	C11—C10—H10A	109.5
C2—C1—C6	122.9 (6)	C9—C10—H10B	109.5
$C_2 - C_1 - C_1$	117 3 (5)	C11—C10—H10B	109.5
C6-C1-C11	119.8 (4)	H10A—C10—H10B	108.1
C1 - C2 - C3	119.5 (6)	C_{12} C_{11} C_{10}	108 5 (5)
C1 - C2 - H2	120.2	C12 $C11$ $H11A$	110.0
C_{3} C_{2} H_{2}	120.2		110.0
$C_{4} = C_{2} = C_{2}$	119.9 (6)	C12_C11_H11B	110.0
$C_{4} = C_{3} = C_{2}$	120.0	C10_C11_H11B	110.0
$C_{1} = C_{2} = H_{3}$	120.0	H11A_C11_H11B	108.4
$C_2 = C_3 = H_3$	110.0 (6)		124.0 (6)
C_{3} C_{4} H_{4}	119.9 (0)	01 - 012 - 011	124.0(0) 120.0(5)
$C_5 = C_4 = H_4$	120.1	$C_{11} = C_{12} = C_{7}$	120.9(3)
C_{3}	120.1	C11 - C12 - C7	114.1(3) 124.8(5)
C4 = C5 = C6	121.5 (5)	03 - 013 - 04	124.8 (3)
С4—С5—Н5	119.2	03-013-014	120.4 (5)
С6—С5—Н5	119.2	04 - 013 - 014	114.6 (5)
CI = C6 = C5	116.3 (5)	02-014-012	110.3 (4)
C1 - C6 - C7	122.6 (5)	02C14C13	110.9 (4)
C5—C6—C7	120.6 (5)	C15-C14-C13	110.3 (5)
N1—C7—C6	108.6 (4)	O2—C14—H14	108.4
N1—C7—C12	107.1 (4)	C15—C14—H14	108.4
C6—C7—C12	115.7 (4)	C13—C14—H14	108.4
N1—C7—C8	108.2 (4)	O5—C15—C14	107.9 (4)
C6—C7—C8	113.6 (4)	O5—C15—C16	112.2 (4)
C12—C7—C8	103.2 (4)	C14—C15—C16	114.3 (4)
C9—C8—C7	111.5 (4)	O5—C15—H15	107.4
С9—С8—Н8А	109.3	C14—C15—H15	107.4
С7—С8—Н8А	109.3	С16—С15—Н15	107.4
C9—C8—H8B	109.3	O7—C16—O6	126.1 (5)
С7—С8—Н8В	109.3	O7—C16—C15	118.3 (5)
H8A—C8—H8B	108.0	O6—C16—C15	115.6 (5)

supplementary materials

C10—C9—C8	111.1 (5)	C14—O2—H2A	109.5
С10—С9—Н9А	109.4	C15—O5—H5A	109.5
С8—С9—Н9А	109.4	С16—О6—Н6	109.5
C6—C1—C2—C3	1.5 (10)	C9—C10—C11—C12	55.6 (7)
Cl1—C1—C2—C3	-179.4 (5)	C10-C11-C12-O1	107.0 (6)
C1—C2—C3—C4	-2.1 (10)	C10-C11-C12-C7	-61.8 (6)
C2—C3—C4—C5	2.2 (9)	N1-C7-C12-O1	6.8 (6)
C3—C4—C5—C6	-1.8 (8)	C6-C7-C12-O1	128.1 (5)
C2—C1—C6—C5	-1.0 (8)	C8—C7—C12—O1	-107.2 (5)
Cl1—C1—C6—C5	179.9 (4)	N1-C7-C12-C11	175.9 (5)
C2—C1—C6—C7	-173.0 (5)	C6—C7—C12—C11	-62.8 (6)
Cl1—C1—C6—C7	7.9 (7)	C8—C7—C12—C11	61.9 (6)
C4—C5—C6—C1	1.2 (8)	O3—C13—C14—O2	-9.2 (7)
C4—C5—C6—C7	173.3 (5)	O4—C13—C14—O2	175.6 (4)
C1—C6—C7—N1	75.1 (6)	O3-C13-C14-C15	113.3 (5)
C5-C6-C7-N1	-96.5 (5)	O4-C13-C14-C15	-61.9 (6)
C1—C6—C7—C12	-45.3 (7)	O2-C14-C15-O5	65.8 (5)
C5—C6—C7—C12	143.0 (5)	C13—C14—C15—O5	-57.0 (6)
C1—C6—C7—C8	-164.5 (5)	O2-C14-C15-C16	-59.7 (6)
C5—C6—C7—C8	23.9 (6)	C13-C14-C15-C16	177.5 (5)
N1—C7—C8—C9	-172.2 (4)	O5-C15-C16-O7	9.9 (7)
C6—C7—C8—C9	67.1 (6)	C14—C15—C16—O7	133.1 (5)
С12—С7—С8—С9	-59.0 (5)	O5-C15-C16-O6	-170.8 (4)
C7—C8—C9—C10	59.8 (6)	C14—C15—C16—O6	-47.6 (6)
C8—C9—C10—C11	-56.0(7)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A····O7 ⁱ	0.91	1.81	2.715 (5)	176
N1—H1B…O4	0.91	2.05	2.856 (5)	147
N1—H1C···O1	0.91	2.13	2.642 (5)	115
N1—H1C····O3 ⁱⁱ	0.91	2.29	2.893 (5)	123
N1—H1C····O5 ⁱⁱ	0.91	2.37	3.001 (5)	126
O2—H2A…O3	0.84	2.24	2.672 (5)	112
O2—H2A···O1 ⁱⁱⁱ	0.84	2.60	3.388 (5)	157
O5—H5A···O6 ^{iv}	0.84	2.09	2.864 (5)	153
O6—H6…O4 ^v	0.84	1.64	2.460 (5)	166
O6—H6…O3 ^v	0.84	2.62	3.265 (5)	134
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				

Symmetry codes: (i) -*x*+2, *y*-1/2, -*z*+3/2; (ii) -*x*+1, *y*-1/2, -*z*+3/2; (iii) -*x*+1, *y*+1/2, -*z*+3/2; (iv) -*x*+2, *y*+1/2, -*z*+3/2; (v) *x*+1, *y*, *z*.

